

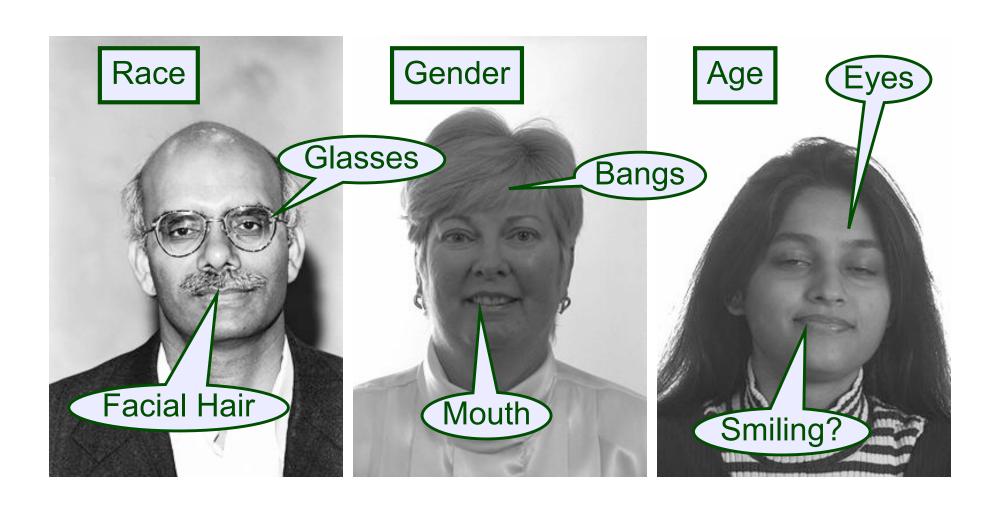
Linear and Generalized Linear Models for Analyzing Face Recognition Performance

J. Ross Beveridge Colorado State University

Credit Where Credit is Due ...

- Bruce Draper CSU Computer Science
- Geof Givens CSU Statistics
- Jonathon Phillips NIST
- Graduate Students
 - Wendy Yambor, Kai She, David Bolme, Kyungim
 Baek, Marcio Teixeira, David Bolme, Ben Randall,
 Trent Williams, Jilmil Saraf, Ward Fisher

What Factors (Covariates)?

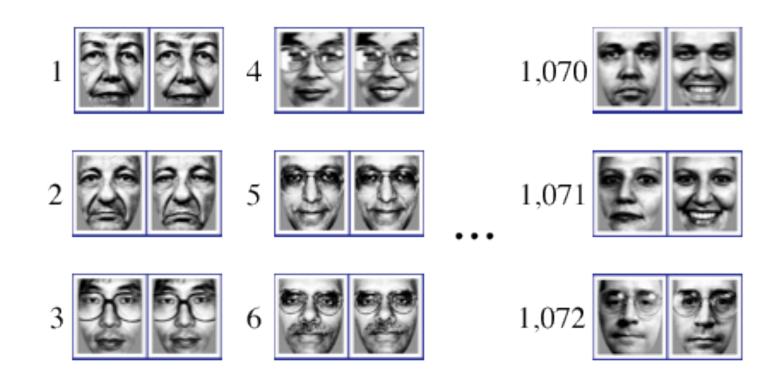


Subject Image Data

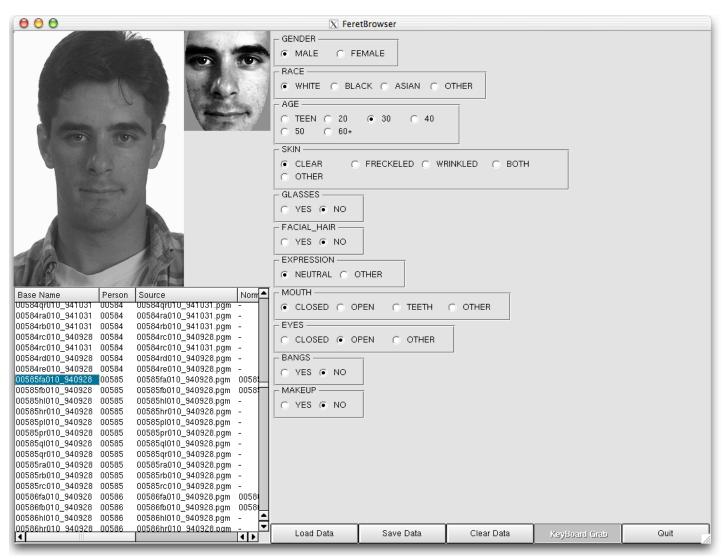
Yes, Yes, FER(R)ET Again ...

Subject Image Data

- 1,072 Human Subjects from the FERET Data
- 2,144 FERET Images
- Exactly 2 images per subject, taken on same day



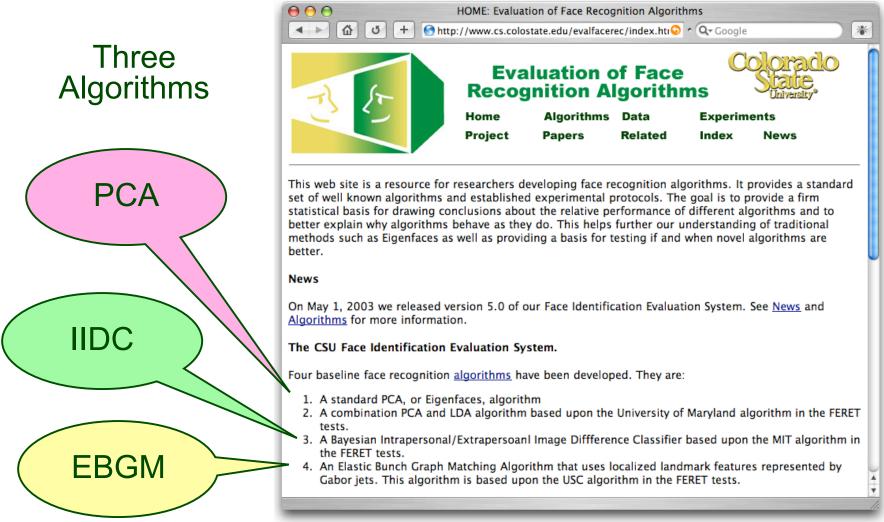
Collecting the Covariates



Our Subject Covariates

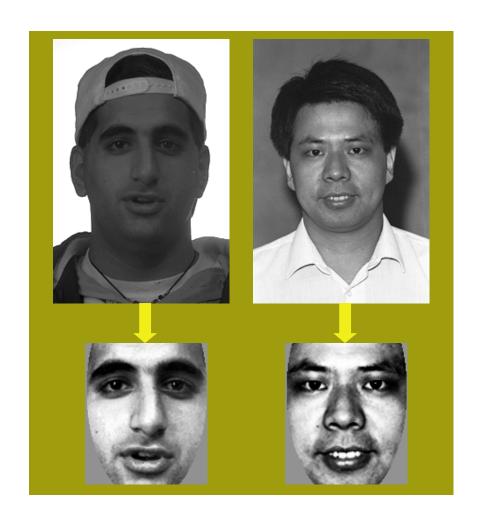
FERET Subject/Image Covariates				
Fixed Per Subject				
Age	Young	Old		
Gender	Male	Female		
Race	White	Black	Asian	Other
Skin	Clear	Other		
Fixed Per İmage				
Bangs	No	Yes		
Expression	Neutral	Other		
Eyes	Open	Other		
Facial Hair	No	Yes		
Makeup	No	Yes		
Mouth	Closed	Other		
Glasses	No	Yes		

Standard Algorithms to Test



http://www.cs.colostate.edu/evalfacerec/index.html

NIST FERET Image Preprocessing

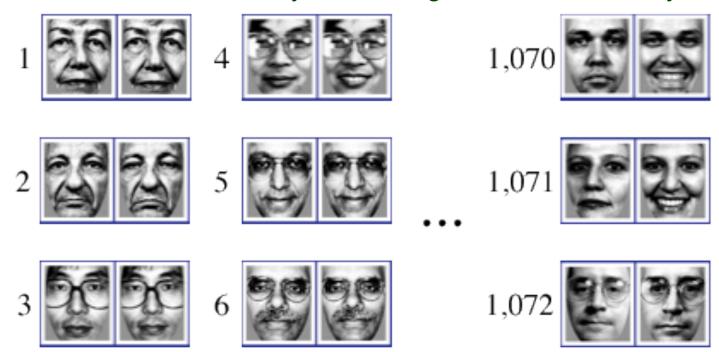


- Integer to float conversion
 - 256 gray levels to single-floats
- Geometric Normalization
 - Human chosen eye centers.
- Masking
 - Elliptical mask around face.
- Histogram Equalization
 - Equalize unmasked pixels
- Pixel normalization
 - Shift and scale pixel values so mean pixel value is zero and standard deviation over all pixels is one.

Refinement of NIST preprocessing used in FERET.

Training

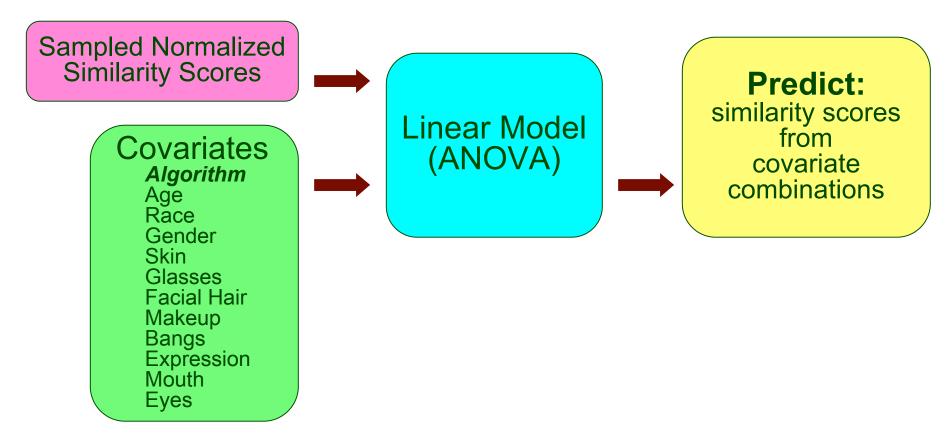
- Best, but infeasible, solution
 - Disjoint images, same set of human subjects.
 - But, subject replicate images limited in FERET.
- Next best choice
 - Train on exactly those images used in the study.



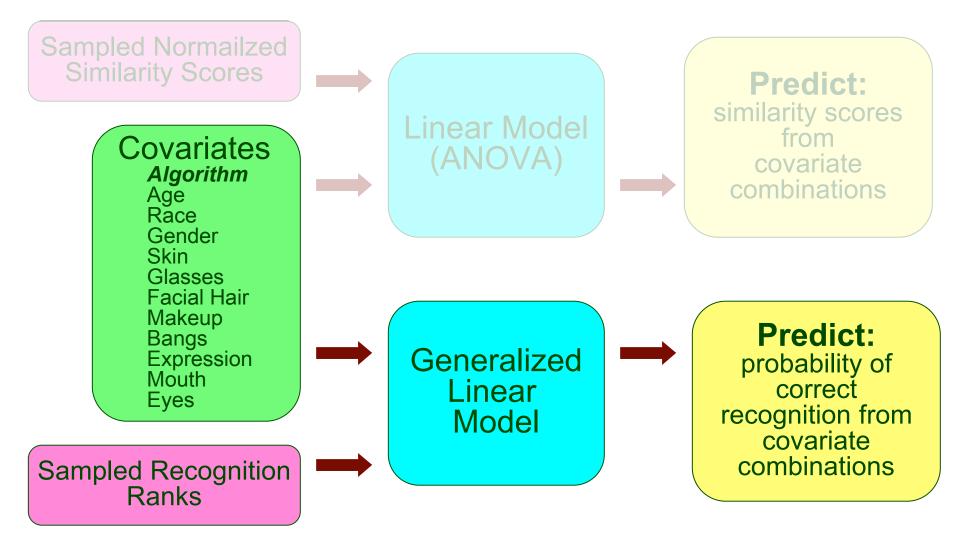
Performance Variable?

- Recognition Rate?
 - Defined over a set of people, not per person.
- Similarity score?
 - Defined per person.
 - Linear models, ...
 - But, what does this tell us about actual performance?
- Probability of being recognized at Rank 1?
 - Defined per person.
 - Non-linear modeling problem.
- Probability of being correctly verified at given FAR?
 - Defined per person.
 - Non-linear modeling problem.

Statistical Modeling Overview



Statistical Modeling Overview



Linear Model - Similarity (Distance)

 Y_i = Similarity (Distance) metric for image pair i.

 \underline{X}_{i} = Algorithm & Human covariate factors for image pair *i*.

 $\underline{\beta}$ = Parameters quantifying factor effects.

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + ... + \epsilon_{i}$$

with $\varepsilon_i \sim iid Normal(0, \sigma^2)$

Generalized Linear Model Pr(correct rank one recognition)

 Y_i = Was the *i*th image pair matched at rank 1 ? (i.e. Y_i = 1 if R_i = 1 and otherwise Y_i = 0)

 \underline{X}_{i} = Algorithm & Human covariate factors for image pair i.

 $\underline{\beta}$ = Parameters quantifying factor effects.

$$\begin{split} g(\mu_{Yi|\underline{X}i}) &= \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \epsilon_i \\ Y_i &\mid \underline{X}_i \sim f(\mu_{Yi|Xi}) \ \ independently \end{split}$$

Now:
$$g(z) = log(z/(1-z))$$
, $f(\mu_{Yi|\underline{X}i}) = Bernoulli(\mu_{Yi|\underline{X}i})$

What Do Models Tell Us? PCA Algorithm Example.

Look at age holding all other covariates fixed.

Covariate	Base	Old
Age	Young	Old
Gender	Male	Male
Race	White	White
Skin	Clear	Clear
Bangs	No	No
Expression	Neutral	Neutral
Eyes	Open	Open
Facial Hair	No	No
Makeup	No	No
Mouth	Closed	Closed
Glasses	No	No

Similarity Scores - LM

- 13.0% Increase in similarity
- p-value < 0.0001
- Older is easier.

Pr(rank-one) - GLM

- Pr(crk=1) = 0.916 Base
- Pr(crk=1) = 0.951 Old
- p-value = 0.009
- Older is easier.

What Do Models Tell Us? PCA Algorithm Example.

Look at gender holding all other covariates fixed.

Covariate	Base	Old
Age	Young	Young
Gender	Male	Female
Race	White	White
Skin	Clear	Clear
Bangs	No	No
Expression	Neutral	Neutral
Eyes	Open	Open
Facial Hair	No	No
Makeup	No	No
Mouth	Closed	Closed
Glasses	No	No

Similarity Scores - LM

- 1.7% decrease in similarity
- p-value < 0.33
- Gender is not significant.

Pr(rank-one) - GLM

- Pr(crk=1) = 0.915 Base
- Pr(crk=1) = 0.884 Female
- p-value = 0.0925
- Gender is not significant

Model Validation & p-values

Table 1: ANOVA results for the linear model. 'B'='both images', 'O'='Other', 'Ch'='changes from one image to the other', and ':' indicates an interaction.

Predictor	Est.	S.E.	t	р
Intercept	-8.44	0.08	-107.76	< 0.0001
IIDC	5.48	0.11	49.46	< 0.0001
EBGM	3.54	0.11	31.98	< 0.0001
Old	-0.57	0.08	-7.09	< 0.0001
Female	0.18	0.09	2.14	0.0324
AfrAmerican	-0.19	0.11	-1.76	0.0790
Asian	-0.64	0.10	-6.43	< 0.0001
O Race	-0.07	0.12	-0.59	0.5534
O Skin	-0.29	0.09	-3.08	0.0021
B Bangs	-0.82	0.08	-9.74	< 0.0001
Bangs Ch	-1.08	0.19	-5.63	< 0.0001
B O Expression	0.65	0.15	4.39	< 0.0001
Expression Ch	1.63	0.08	19.94	< 0.0001
B Eyes Not Open	-1.66	0.32	-5.22	< 0.0001
Eyes Ch	1.56	0.11	13.79	< 0.0001
B Facial Hair	0.25	0.10	2.40	0.0164
Facial Hair Ch	-0.75	0.32	-2.34	0.0191
B Glasses	-2.43	0.13	-18.14	< 0.0001
B Makeup	-0.23	0.11	-2.02	0.0439
Makeup Ch	0.32	0.26	1.23	0.2179
I				_

Don't try to read this....

Table 2: Summary of generalized linear model results.

, ,	df	Δ Deviance	p
Intercept		Note 1	
Algorithm	2	Note	2
Age	1	5.73	0.0167
Bangs	2	63.99	< 0.0001
Facial Hair	2	11.12	0.0039
Mouth	2	76.50	< 0.0001
Race & Alg. : Race	9	46.48	< 0.0001
Skin & Alg. : Skin	3	24.00	< 0.0001
Expr. & Alg. : Expr.	6	54.64	< 0.0001
Eyes & Alg. : Eyes	6	131.87	< 0.0001
Glasses & Alg. : Glasses	3	8.15	0.0430
Gender & Alg. : Gender	3	9.55	0.0228

Note 1 The null model deviance is 4,266.9 on 6,425 df. The model using all terms given above has residual deviance of 3,676.9 on 6,386 df—highly significant.

Note 2 The factor indicating algorithm has many significant interactions in this model and is highly significant. In a table organized to show subject covariate effects, an analogous test for algorithm would be distracting.

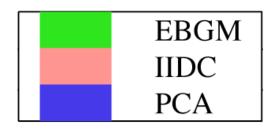
Standards for evaluating and reporting results important.

GLM with Three Algorithms

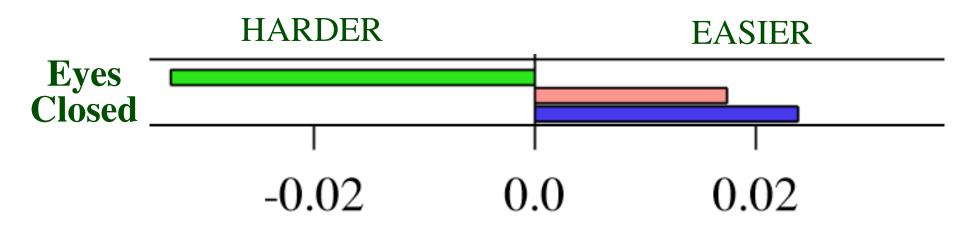


Age: Young vs. Old

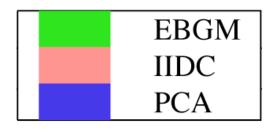
Change to Baseline Predicted Pr(crk=1)



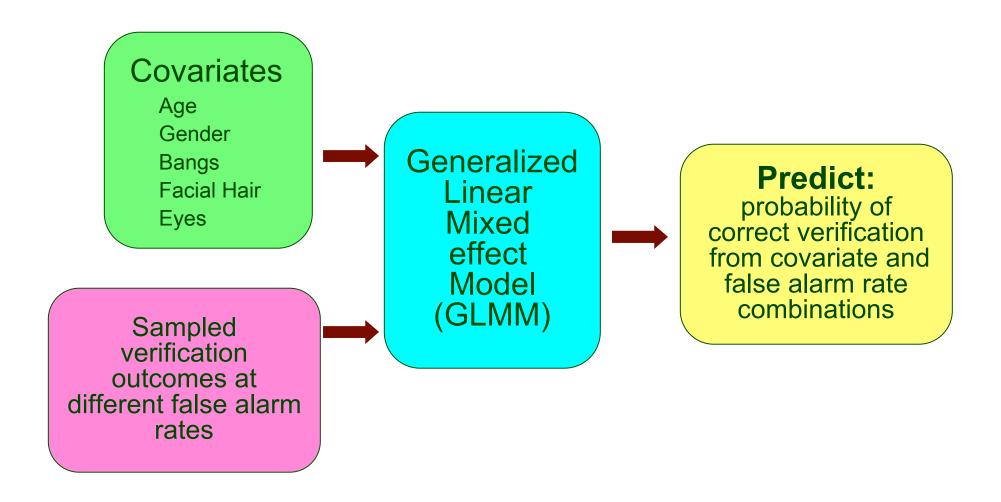
Eyes: Open vs. Closed



Change to Baseline Predicted Pr(crk=1)



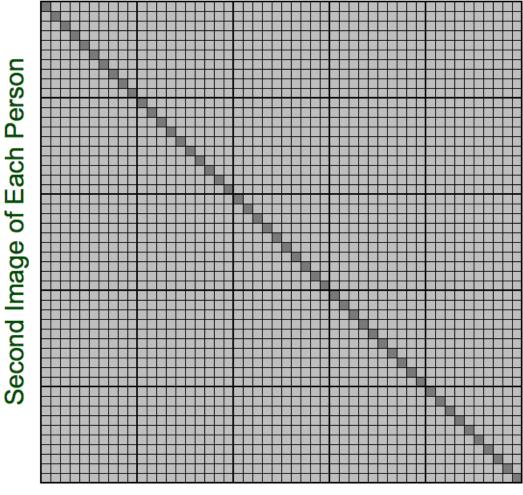
Verification Performance



Each

Verification Outcomes at Fixed False Alarm Rate α

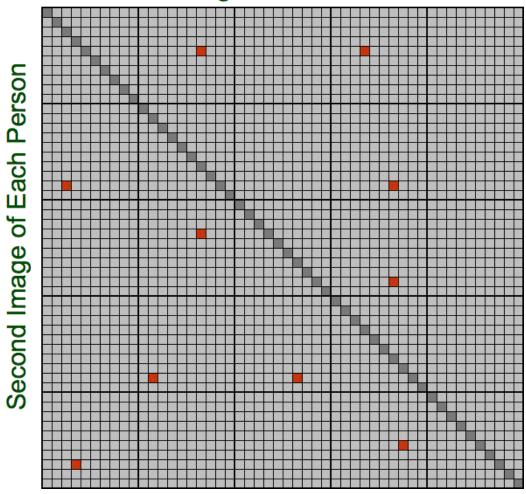
First Image of Each Person



Two Images per Subject Example 50 x 50 Similarity Matrix

Verification Outcomes at Fixed False Alarm Rate α

First Image of Each Person

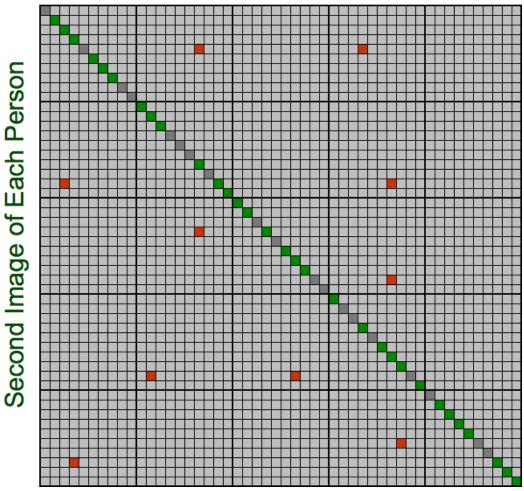


Two Images per Subject
Example
50 x 50 Similarity Matrix

1) Set FAR α , e.g. $\alpha = 1/250$

Verification Outcomes at Fixed False Alarm Rate α

First Image of Each Person



Two Images per Subject
Example
50 x 50 Similarity Matrix

- 1) Set FAR α , e.g. $\alpha = 1/250$
- 2) Indicate people correctly verified at threshold corresponding to α

Verification Indicator Variable and FAR settings

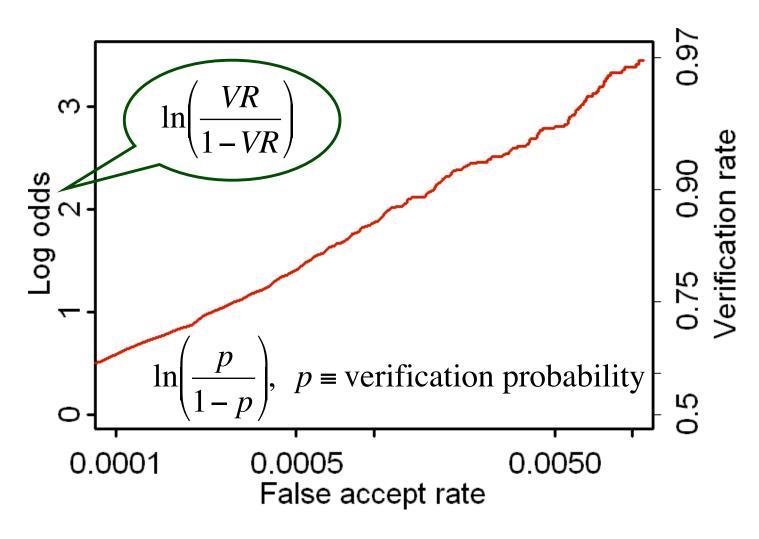
- Our study 1,072 x 1,072 similarity matrix.
 - 1,072 match scores,
 - 1,148,112 non-match scores.

Indicator Variable Y for each subject for each FAR setting:

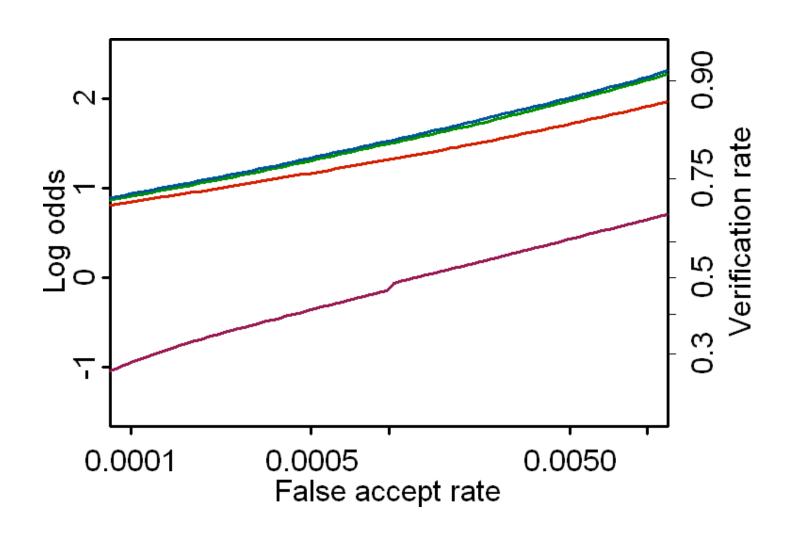
1 verified
0 otherwise
7 settings total.

Setting	FAR (α)	Rate per 10,000
1	1/10,000	1
2	1/5,000	2
3	1,2,500	4
4	1/1,000	10
5	1/500	20
6	1/250	40
7	1/100	100

Linearity of Log Odds against Log FAR - FERET+PCA



Linearity of Log Odds against Log FAR - FRVT



Generalized Linear Mixed Model (GLMM)

Analysis is: Mixed Effects Logistic Regression with Repeated Measures on People.

- Let A and B be 2 factors that might influence algorithm performance. For example, age and gender.
 - Example factor settings A=a and B=b.
- Let j index the FAR setting, α_{i}
- Y_{pabj} is
 - 1 if Person p is verified correctly,
 - 0 otherwise.
- Y_{pabj} depends on:
 - person p,
 - factors A and B, and
 - false alarm rate α_i .

GLMM Model Continued ...

 Y_{pabi} is Bernoulli R.V. with success probability p_{pabi}

$$\log\left(\frac{p_{pabj}}{1 - p_{pabj}}\right) = \mu + A_a + B_b + \gamma_j \log(\alpha_j) + A_a \gamma_{aj} \log(\alpha_j) + \pi_p$$

= grand mean μ

= effect of setting a of factor A

= effect of setting b of factor B

 B_b = effect of setting b of $\gamma_j \log(\alpha_j)$ = log linear effect of α_j $\gamma_{aj} A_a \log(\alpha_j)$ = interaction effect

subject id. random effect (next page) π_p

Subject Variation - The Mixed in Generalized Linear Mixed effect Model

$$\begin{bmatrix} \pi_1, \dots, \pi_{1,072} \end{bmatrix}^T \sim \text{Multivariate Normal where}$$

$$E(\pi_p) = 0, \text{ Var } \pi_p = \sigma_\pi^2,$$

$$Cor(y_{pab\alpha}, y_{p'a'b'\alpha'}) = \begin{cases} \phi & \text{if } p = p' \\ 0 & \text{if } p \neq p' \end{cases}$$

This means:

The outcomes, i. e. verification success/failure, are uncorrelated when testing different people but correlated when testing the same person under different configurations.

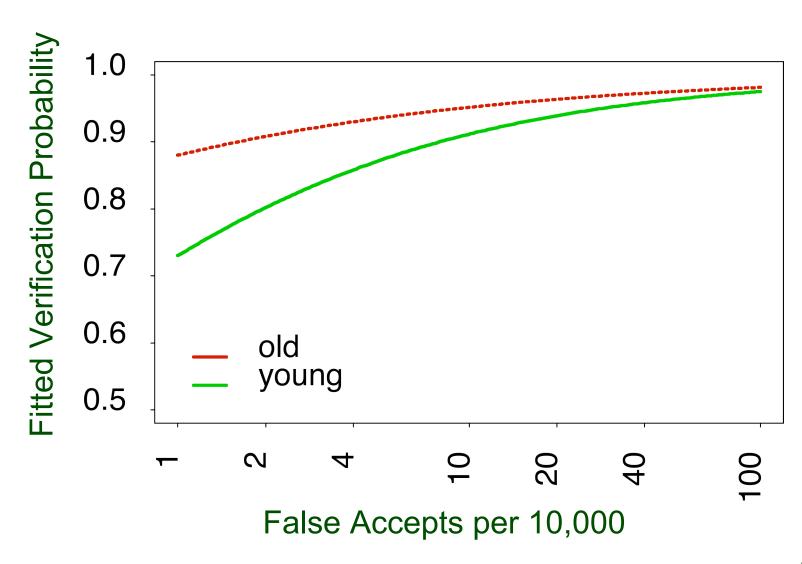
Random Effects are Important GLMM vs. GLM

- Some people are harder to recognize then others.
- But, we don't care who specifically is hard or easy.

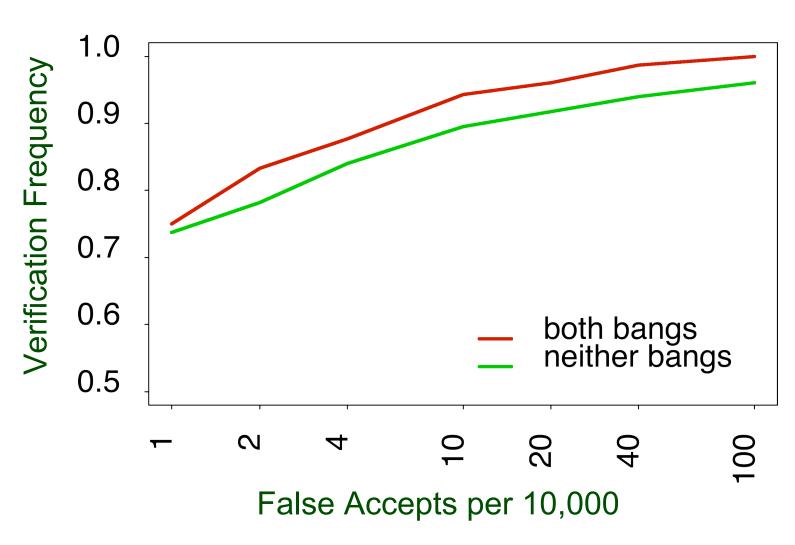
Removing the "noise" of random effects helps reveal other significant effects of interest.

Marginal Verification Rates - Age

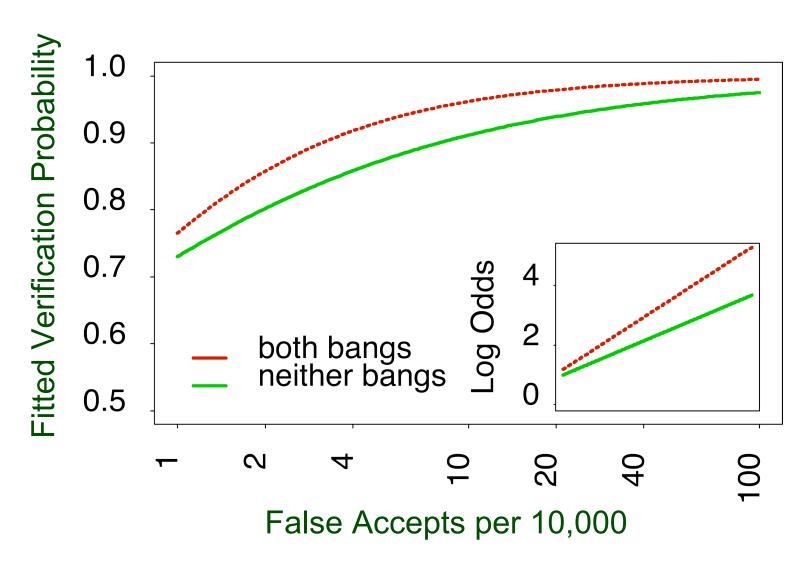
Results of the Model - Age



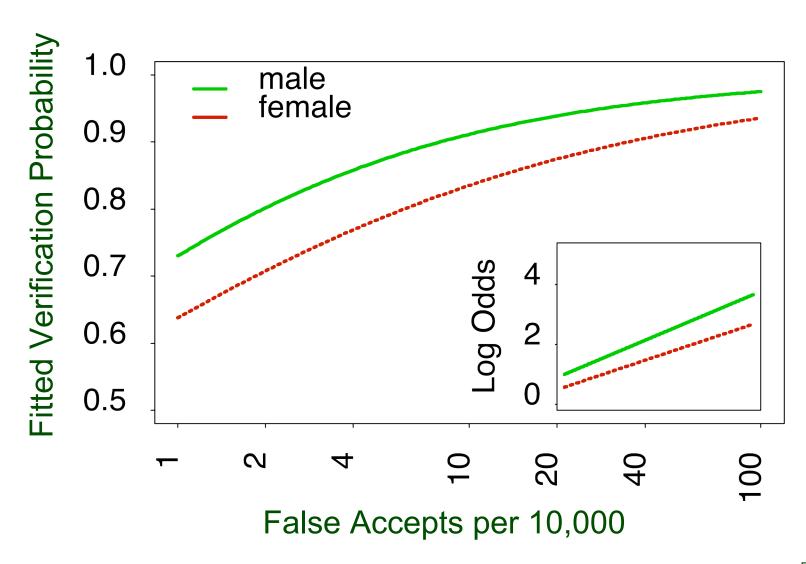
Marginal Verification Rates - Bangs



Results of the Model - Bangs



Results of the Model - Gender



Step Back: Why use Linear Models and Generalized Linear Models

 F_1

Start with a set of factors - covariates

 F_2

These may be ...

 F_3

Properties of the subject: age, etc.

Properties of the scene: lighting, etc.

:

Properties of the image:

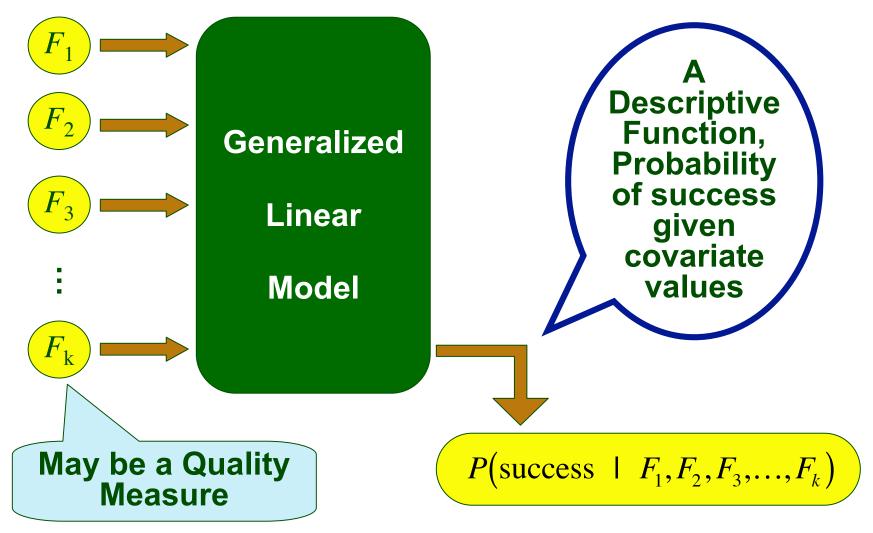
 $F_{\rm k}$

Focus

Resolution

Contrast

Step Back: Why use Linear Models and Generalized Linear Models



Thank You

LM with Three Algorithms

